If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-5500x+2500000=0
a = 1; b = -5500; c = +2500000;
Δ = b2-4ac
Δ = -55002-4·1·2500000
Δ = 20250000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20250000}=4500$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5500)-4500}{2*1}=\frac{1000}{2} =500 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5500)+4500}{2*1}=\frac{10000}{2} =5000 $
| 4x=1680 | | 24=t/4-6 | | 3x=1260 | | j/12+90=103 | | 13x+16x=16x | | -7x-1=34 | | 106=8(v+8)+2 | | 5.50+.25x=12 | | 68=3d+23 | | 16x+16x=13x | | 16x+13x=16x | | 13x+16x=16 | | -8=-10+2n | | 2=v/5-2 | | 16x+16=13x | | w/5+17=34 | | 3.3x=2.5+5.6 | | 5-9(+5)-7=5+3(9-3x)-81 | | (12x+16)+(19x-22)=(24x+15) | | 2-9x=119 | | 45=2u+15 | | 45=2u | | 4n/5-4n/7=36/35 | | (14x-13)+(8x+11)=180 | | 2(2x+8)=2(2x+6) | | (2x+16)+(3x-15)=180 | | 19x-(9x-7)=17 | | 2=n+10 | | 5n-13=2 | | -264=8(x-13 | | y^2-62-90=0 | | 3c+48=7c |